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Abstract. We consider the problem of separation of variables in the Kramers equation admitting
a non-trivial symmetry group. Provided the external potential) is at most quadratic, a complete
solution of the problem of separation of variables is obtained. Furthermore, we construct solutions
of the Kramers equation with separated variables in explicit form.

1. Introduction

Many phenomena in physics and, especially, in chemical physics may be modelled as the
Brownian motion of particles in an external poten¥dlx), the appropriate transport equation
being the (1 + 2)-dimensional Fokker—Planck equation of special form

Uy = vty — yuy + (vy + V'(x)uy, +vu Q)

whereu = u(t, x, y) is a sufficiently smooth real valued function and a real parameter.

The first relevant result on studying the partial differential equation (PDE) (1) has been
obtained by Kramers [1]. He found a solution of the escape problem of a classical particle
subjected to Gaussian white noise out of a deep potential well. This is why the equation in
question is called the Kramers equation (KE) (see, for more details [2—4]).

As KE is a PDE with variable coefficients, we cannot apply the Fourier transform in order
to solve it. In fact the only way to obtain exact solutions of KE are either to utilize its Lie
symmetry or to apply the method of the separation of variables. The first possibility has been
exploited recently in [5, 6], where symmetry classification of the class of PDEs (1) has been
carried out. The principal result of these papers is that KE has a symmetry group that is wider
than a trivial one-parameter group of time translations if and oni/’ifc) = 0.

The principal aim of this paper is to apply the direct approach to variable separation in
PDEs suggested in [7-9] to solve KE. As is well known, separability of the PDE is intimately
connected to its symmetry within the class of second-order differential operators [10]. This is
why, we will concentrate on the ca$dgx) = kx, k = constant, namely, we consider the KE
having non-trivial Lie symmetry

Uy = Vityy — yuy + (Vy +kx)u, +vu. (2)

In a classical setting the method of separation of variables (say, in the Cartesian coordinate
system) is based on a special representation of a solution to be found in factorized form

u(t,x,y) = eo(t)p1(x)p2(y)
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whereg;, i = 0, 1, 2, are solutions of some ordinary differential equations (ODESs). However,
one can try to separate variables in this equation in another coordinate system, for example, in
polar coordinates and look for a solution of the form

u(t,x,y) = @o(t)pr(v/x? + yz)wz<arctan§>.

So, if we are given any coordinate system, then it is clear how to get exact solutions with
separated variables. However, the classical approach gives no general routine for finding
all possible coordinate systems providing separability of the equation. Our approach to the
problem of the separation of variables in evolution-type equations (to be specific, we take
the case of an equation having three independent variabtes) is based on the following
observations.

o All solutions with separated variables known to us can be represented in the form

M(t, X, )’) = Q(t’ X, }’)(ﬂo(l‘)fﬂl(@l(l‘, X, )’))@2(0)2(1, X, Y)) (3)

whereQ, w,, w; are sufficiently smooth functions aggl, i = 0, 1, 2 satisfy some ODEs.

e The functionsy;,i = 0, 1, 2, depend on two arbitrary parametess A, called spectral
parameters or separation constants. Furthermore, the fun@ians w, are independent
Ofkl,Az

By properly postulating these features we have formulated an efficient approach to the
problem of variable separation in linear PDEs [9]. Applying it to the KE (2) we look for its
particular solutions of the form (3), where functio@s w1, w, are chosen in such a way that
inserting (3) into KE yields three ODEs for functiopg(z), ¢1(w1), g2(w2)

Uo(t, @0, o; A1, A2) =0
Ui(wi, @i, @i, $i; A1, A2) =0 i=12 (4)

HerelUy, Uy, U, are some smooth functions of the indicated varialdlgs),, are real parameters
and

aUg 90Uy
9y ha
rank U 3 =2 (5)
dA1  O0A2
aU, aU,
F VR TP

Note that the function®, w1, w, are independent ofy, A,.
Provided these requirements are met, we say that KE is separable in the coordinate system

t,wi(t, x,y), wo(t, x, y).
Due to the fact that the equation under study is linear, the reduced equations prove to be
linear as well. Furthermore, we have to consider two distinct cases.

Case 1.The system of equations (4) has the form

@0 = Ao(t; A1, A2)¢o
@1 = A1(w1; A1, A2)@1
@2 = Ao(wo; A1, A2)@2 + Az(wo; A1, A2)@a. (6)
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Case 2.The system of equations (4) has the form

@o = Ao(t; A1, A2)@o
o1 = Axr(w1; A1, A2)e1
@2 = Ax(w2; A1, A2)@a. (7)

In these formulaedo, ..., Az are some smooth real valued functions of the indicated
variables.

Consequently, there are two different means to separate variables in KE, either to reduce
it to two first-order and one second-order ODEs or to three first-order ODESs. It is impossible
to reduce KE to two or three second-order ODESs because it contains a second-order derivative
with respect to one variable only.

Provided the system of reduced ODEs has the form (6), separation of variables in (2) is
performed in the following way.

1. We insert the ansatz (3) into KE and express the derivaiiye$:, @1, ¢» in terms of
functions gy, ¢1, @2, @2 using equations (6) and their differential consequences (where
necessary).

2. The equality obtained is split p, @1, @2, @2, A1, 2> which are regarded as independent
variables. This yields an over-determined system of nonlinear PDEs for unknown
functionsQ, w1, ws.

3. After solving this system we get an exhaustive description of coordinate systems providing
separability of KE.

Clearly, if we adopt a more general definition of the separation of variables, then additional
coordinate systems providing separability of KE may appear. However, all solutions with
separated variables of the Sotinger and heat conductivity equations known to us can be
obtained within the described approach.

The case when the system of reduced ODEs is of the form (7) is handled in a similar way.

Next, we introduce an equivalence relation on the set of all coordinate systems providing
separability of KE. We say that two coordinate systems,, w, andt’, j, w), are equivalent
if the corresponding solutions with separated variables are transformed one into another by

o the group transformations from the Lie transformation group admitted by KE,
o the transformations of the form

t— 1t = fo(t) w;j = w; = fi(w) (8)
Q — Q' = Qho(t)hi(w1)ha(w2) 9)
where fo, fi, ho, h; are some smooth functions.
It can be proved that formulae (8), (9) define the most general transformation preserving
the class of arégze (3). The equivalence relation splits the set of all possible coordinate systems

into equivalence classes. In a sequel, when presenting the lists of coordinate systems enabling
us to separate variables in KE we will give only one representative for each equivalence class.

2. Principal results

In this section we give a complete account of our results on the separation of variables in
KE obtained within the framework of the approach described in the introduction. We write
down explicit forms of the function® (¢, x, y), w1(¢, x, y), w2(t, x, y) and the corresponding
reduced ODEs for functiongy (), ¢1(w1), g2(w>).
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Theorem 1. Equation (2) admits the separation of variables into two first-order and one
second-order ODEs if and only i takes one of the three valu€s 3v2/16, —3v?/4.
Furthermore, equations separate into three first-order ODEs with arbitkary

Theorem 1 gives a general description of separable KEs. The solution of the problem of
separation of variables in corresponding KEs is provided by theorems 2—6 later.

Theorem 2. The set of inequivalent coordinate systems providing separability of KE with
k = v?/4is exhausted by the following ones

SN2 [ SR Y
fofi— fife ) ) o

0 :exp{(— 1 hRh- Nt })y2+i<f2f1—f1f2 —k)x

b fofi—fif2 4 2\ fafi — fufo
1fofi-fife k , 1 : - v

(o B ) g st 1

2

o=V (%) ®o »1 = rg1 Y2 = A2 (10)

where

fi=t Alsinhzt+Azcosth +A3sinh3t+A4coshBt
2 2 2 2

fo=t| B sinth + B> coshzt + B3 sinhzt + By COShBt
: 2 2 2 2

andAq, ..., By are arbitrary real constants satisfying the conditid@1, — v(C13— C24) = O.
Hereafter we use the notations
C,‘j:BiAj—A,‘Bj l,]=1,,4

Theorem 3. The set of inequivalent coordinate systems providing separability of KE with
k > v?/4is exhausted by those given in (10) with

f1 = sinbt(Ay sinhar + A, coshat) + cosbt (A3 sinhat + A4 coshat)

f2 = sinbt (B sinhat + B, coshat) + cosbt (Bs sinhat + B4 coshat)
wherea = v/2,b = (k — (v2/4))Y? and A4, ..., B, are constants fulfilling the condition

(C12+ C3g)b + (C13 — Ca4)a = 0. The explicit form of the functio@ and the reduced ODEs
are also obtained from the formulae (10) with, f> given previously.

Theorem 4. The set of inequivalent coordinate systems providing separability of KE with
k < v?/4andk # 0, 3v?/16, —3v?/4 is exhausted by those given in (10) with

f1 = sinhbt(A; sinhat + A, coshat) + coshbt (A sinhat + A4 coshat)

f2 = sinhbt (By sinhat + B, coshat) + coshbt (B3 sinhar + B4 coshat)
wherea = v/2,b = ((v?/4) — k)Y? and A4, ..., B, are constants fulfilling the condition

(C12 — C34)b + (C13 — Ca4)a = 0. The explicit form of the functio@ and reduced ODEs are
also obtained from the formulae (10) wifh, f> given before.
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Theorem 5. The set of inequivalent coordinate systems providing separability of KE with
k = Ois exhausted by:

(1) those given in (10) with
f1 = Aisinhvt + Ay coshvr + Agt + Ay
f> = By sinhvt + B, coshvt + Bst + By

whereAy, ..., By are constants fulfilling the equatiarCy, — C34 = 0. The explicit form
of the functionQ and reduced ODEs are also obtained from the formulae (10) yyith>
given previously;

(2) the following coordinate system

y2
w] =X wy =1y Q:exp<_z>

2
. ) . y 1
%o = vA1¢o 1= Vi1 Y2 = <Z +Azy A1 — E) ¥2.
Theorem 6. The set of inequivalent coordinate systems providing separability of KE with

k = 3v?/160r k = —3v?/4is exhausted by

(1) those given in theorem 4 undee= 3v?/160r k = —3v?/4;
(2) the following coordinate systems

w1 = R3x w2 = Ry + 3Rx

0 = ex R 1 2o, 1 31% .
=&xp VR 4y 2v\ R *y

3R  15RR k\ , v
+H - —+ — = )x®2+ =t +2InR
( 4R 4vRZ 4>x 2 }

@0 = vA1R%po @1 = V201 P2 = (hawz + A1) @2
where
1 3,2
coshar 2 underk = %
R(t) = 1 witha = .
sinhat K underk = _3L
exp{+at} 2 4

3. Proof of theorems 1-6

In order to prove the assertions of the previous section one should apply to equation (2) the
algorithm of variable separation described in the introduction.

We give a detailed proof for the case when the system of reduced ODEs is of the form (6).
Inserting ansatz (3) into KE (2) and expressing the derivatpges:, ¢1, @ in terms of the
functionsgg, ¢1, @2, @2 with the use of equations (6) and their differential consequences yield
a system of two nonlinear PDEs
Qg + yQwa, = v(yQway + 20, @), + 20 A1, w3, + QAr05, + Q) +kx Qg

(11)
0:+ QAo+ QArwy, + Y0, +yQA 101,
=v(Q +yQy +yQA101 + Q,, + 20, A1y + Q(A] + Ay, ),

+QAr01yy + QA305) +kx(Qy + QArw1y). (12)
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This system is split with respect to variables 1, (we recall that the functions;, w,
are independent dfy, A»). To this end we differentiate (11) with respectitoand get

(2A1)w w1y t Az)w.a)zy)a)zy =0 i=12

Due to the fact thaty,, does not vanish identically (otherwise it follows from (11) that
w, = constant), the equation
2./41)”6()1y + Ay, w2y = 0 i=12 (13)

holds.

Let us show first that we can, without loss of generality,gpyt= 0. Suppose the inverse,
namely that the inequality:, # 0, holds true. It follows from the second equation of system
(6) thatAZ, + A%+ 0. Letthe functiomy,, be non-vanishing, then by the influence of (13)
Ay, # 0. Denoting

Ap, = g(w1, A1, A2) — 2A2, = f(w2, A1, 22)
we rewrite (13) as follows
w1y flwz, A1, A2)
way  g(w1, A1, A2)
Differentiating (14) with respect ta; yields

(14)

S _ 8n
f g

Hence, we conclude that there is a functioa: k(11, A») such that
-fxl

8
= — = k(A1 12).
A g

Integrating these equations we get
f = ki(r1, 12) fr(w2, 12) g = ki(A1, A2)g1(w1, A1)
so that (14) reduces to the relation
o _ filwz, A2)
w2y g1(w1, A2)
In a similar way we establish that the last relation is equivalent to the following one
oy _ fo(@2)
wz,  g2(w1)

hence

g2(wp)w1y = fo(w2)way.

Taking into account the equivalence relation (8) we canggue 1 and f> = 1 in the
equality thus getting1, = wy,. Integrating this PDE yields

w1 = wy+h(t,x)

with an arbitrary smooth functioh. In view of this equation, relation (13) takes the form
241, + Ay, =0 i=12

Hence we conclude that there exists a functdai,, 1,) such that
A1 = A(A1, A2) + Ar(wy) Az = —2A (A1, h2) + Az(wp). (15)
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Within the equivalence transformation (9) with properly chosen functlans, we can put
Ai(w1) =0, A2(w2) = 0. Furthermore, defining the new separation constants as
A= A(hg, A2) Ay = A2
and omitting the primes we represent (15) in the form
AL =M Ay = —2)1.
Consequently, system (6) takes the form
@o(t) = Ao(t)po(t)
p1(w1) = Ap1(wr)
$2(w2) = —20192(w2) + Az(w2, A1, A2)@2(w2). (16)

Making the change of variablgs = ¢ exp{—A1w»} reduces the third equation of system
(16) to

¢ = (1] + A9)¢.
Let¢ = ¢ (w2, A1, A2) be a solution of this equation. Then, the corresponding solution with
separated variables becomes

u=Q(,x,y)¢p(w2, A1, A2) exp{ / Ao(t) dt + Aq(w1 — wz)}-

The structure of so obtained solution with separated variables is such that dependence of
ony is not essential. Indeed, the functien enters into the solution only as a combination
w1 — w7 and the latter is equal t(z, x). Consequently, we have proved that without loss of
generality we may choose;, = 0.

Given the conditionv;, = 0, equation (13) reduces to the relatiohs, = 0,i = 1, 2,
hence we gefi, = A,(w2). Choosing appropriately the functi@a in (9) we can putd, = 0.
Next, differentiating (12) with respect tqQ we arrive at the equations

Ag, + Ay, (0y +yor) = VAax,-wgy i=12 (17)
Differentiating twice these equations with respect tyields
A&uzwg)\,- wgy + 5A3a>2A; a)gyw2yy + 2A3)L,v (wgyy + waU)Zyyy) =0 (18)

wherei =1, 2.
Note that due to (17) the inequalityz;, # O holds. Dividing (18) intoAs, and
differentiating the equality obtained Ry, j = 1, 2 we get

Az, Azani,
( 3(1)2 2)\1 > a)%v + 5< 3(1)2)»1 > Cl)2yy — 0 i’ J = 1, 2 (19)
Asy, A Az Aj

Case 1.At least one of the four expressions

<A3wzxf )

A3}»1 Aj

does not vanish. Then it is easy to become convinced that
w2yy

— = f(w2)

w3,

holds true. Integration of this relation yields

w2y = g1(t, x) exp{ / Sf(w2) dwz}

whereg; (¢, x) is an arbitrary smooth function.
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Next, by using the equivalence relation (8) we reduce the equation obtained to the form
w2y = g1(t, x)
whence
w2 = yga(t, x) + ga(t, x) (20)

g2(t, x) being an arbitrary smooth function.
In view of this result, (18) takes the foray,,.,,, = 0,7 = 1, 2, whence

Az = A1(A1, Ap)wz + Aa(hy, Ao) + F(w)) (21)

whereA1, A, F are arbitrary smooth functions of the indicated variables. Furthermore, it is
not difficult to prove thatA 1, A, are functionally independent (since otherwise condition (5)
would be broken) and, consequently, after redefining., we can represent (21) in the form

Az = Mwo + Ao+ F(wy). (22)

Case 2.Suppose that now

Az
(;@ﬁ> =0 ij=12
ASA, A;
Integrating this system of PDESs gives the following formAay,
Az, = Bi(w2)L;i (A1, A2) i=12 (23)

whereB;, L; are arbitrary smooth functions al§ + B2 + 0.
As a compatibility condition of system (23) we get

B1L1y, = BoLyy,.

Subcase 2.1.Lyy, # 0, Ly, # 0. Given these restrictions the compatibility condition is
transformed to

Bi(wz) Ly,

Bo(w)  Lu,
Integrating system (23) with the result of (24) yields

Az = A(A1, A2) Fi(wp) + Fa(w?)
where A, F are arbitrary smooth functions of the indicated variables. After redefining the
separation parametexsg, A, we represent the relation as follows

Az = A Fi(wp) + Fo(ws). (25)

= constant (24)

Subcase 2.2.L1;,, = 0, Ly, = 0. Integrating system (23) and redefining the separation
parametergq, A, yields
Az = MS1(w2) + A282(w2) + So(w2) (26)

wheresSy, S, Sp are arbitrary smooth functions. An analysis of formulae (22), (25) and (26)
shows that the first two are particular cases of formula (26). Thus, the most general form of
the functionAs is given by (26).

Inserting (26) into (17) and differentiating the equality obtained with respecatad) ; gives

Ap,, = 0,1, j =1, 2. Hence, we get foA;

Ay = *Li(w1) + AoLo(w1) + Lo(ws) (27)
whereL,, L, Lq are arbitrary smooth functions.
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Next, inserting (26), (27) into (17) and differentiating the equation obtained with respect
to; we getAp,., =0,i, j = 1,2, hence
Ao = 2R1(t) + 22Rz(2) + Ro(7) (28)

whereR1, R, Rg are arbitrary smooth functions.
With these results we can split equations (11) and (12):by., thus obtaining a system
of four nonlinear PDEs for the three functions, w,, O

Qwy +yQwo, = (vy +kx) Quway + 200 ywoy + v Qwyy,y (29)
Q; + QRo+ QLo(wy, + ywr,) + yQ, = vQ + (vy +kx)Qy +v 0y, +vQSow5, (30)
Ry + Li(wy + you) = vS105, (31)
Ry + La(wy + yor) = vSa05,. (32)

Making an equivalence transformation (9) with appropriately chosen functions we can put
Lo = 0 andRy = 0. Next, due to the requirement in (8)S2 # 0.

There are two inequivalent cases = 0 andL, # 0. Since they are handled in a similar
way, we consider in detail the case = 0 only. In view of (5)L; does not vanish. Choosing
appropriately the functiong;, f> in (8) we can put.; = 1, S, = +1 in formulae (29)—(32).
Integrating (32) with (31) yields

w2 = R(@)y+ F(t,x) R(®) #0 (33)

whereR, F are arbitrary smooth functions al} = +vR?.
Differentiating (31) twice with respect tp and taking into account (33) we arrive at the
equationSi,,., = 0, therefore

§1 = Crwz + C3

whereC; # 0 andC, are arbitrary constants. Next, integrating (31) we obtairJQrF (z, x)
w1 = vC1(R3% + P(1)) — / R1(¢) dr

F(t,x) =3R+R72P(t) — C{1C; (34)

whereP () is an arbitrary smooth function.
Hence, we conclude that the corresponding solution with separated variables reads as

u=0Q(@,x,y) exp{klf Ri(¢)dr + )\.2/ Ry(1) dt} exp{Aiw1}pr(w2)

=Q0(,x,y) EXD{M/ Ro(1) df} expir1(VC1(R3x + P (1))} p2(w2).

Thus, R1(¢) does not enter into the solution with separated variables and, therefore, we can
put R; = 0in (34). Furthermore, within an equivalence transformation (8) we can choose
C,=v71, C, =0, thus getting
w1 = R(1)3x + P(1) (35)
wp, = R(t)y +3R(t)x + PR(t) 2. (36)
ProvidedL, # 0, the forms of the functions1, w, are the same as those given in (35),
(36).
Inserting (35) and (36) into (29) and integratingbye get the form of the factap (¢, x, y)

4R —vR\ , (3R —kR y d/P
_ R a/r _ 37
Q exP{( AR >y +< 20R >xy+2der(R2)+M(t’x)} (37)
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Substituting (37) into (30) we come to the following relation

1dR2+3dR +1Z+M+13Rk2+M
(2 il (e IV — (32 _ ;
v dr Ry 2vdr\ R Y 2v Y " 20\"R Ty

v _R 2R 1 1/.R 1
=_—+2—+(y+k — —Z)y+—(3= —k|x+—=2Z
3t Ty x)<<vR 2>y 2v< R )x 20 )

2R 1 1/.R 1.\? 5
+ - I )y+—(3=— +— +
v((uR 2>y > (3R k)x % Z) vSoR (38)

where we use the notation
Z(t) = R—12 (£> )
dr \ R?
Differentiating (38) three times with respectyqields So,,w,«, = 0, therefore
So = Clwg + Cowy + C3
whereCs, C,, C3 are arbitrary constants. Next, differentiating (38) with respegtttoice and
with respect toc once we ge,,, = 0 or
M = M1(1)x* + Ma(1)x + M3(t)
whereM1, M,, M3 are arbitrary smooth functions.

Finally, inserting the obtained expressions $gr M into (38) and splitting the variables
x, y we come to the following system of ODEs

R R?2 212 V2 ok
— =2+ CR* - —+- 39
R ‘Rz 5 1 10 5 (39)
3R 15 ..k
Mi=———+"—+3vC1RR°> — - 40
YETHR T 4 (40)
. P2 . k2
My = +9vC R?R? — — 41
1T wr? ”(_’11 4 (“41)
1. 2R .
My=——7+=-Z+vC2R®+20RPC; (42)
2v VR
. 3R 5 ..
My; = ——Z+3vR“RC, +6vRPC, (43)
2VR
. v R 1 P2 .
Mz= -+2—+—Z7?+vC;— +vCyP +vC3R?. 44
3 2 R 4y v le vila Vi3 ( )

Differentiating (40) with respect to and subtracting the resulting equation from (41)
yields the fourth-order ODE for the functiah
RV RE R R -
YA D ST SN ON ) Iy
R R3 R? R3 3
Reducing the order of this ODE with the help of equation (39) and its first- and second-order
differential consequences we arrive at the following relation
402 v ok2 vk K2
—C?R®= — +— — — — | 45
25 1 100 25 25 9 (45)
If in (45) C1 # 0, then in view of (39% = 0. ProvidedC; = 0, k is a root of the quadratic

equation

64k% + 36v%k — N2 =0
hencek = 3v?/16 ork = —3v?/4.
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Thus the system of ODESs (39)—(44) is consistent only if the pararhédes one of three
values 0, 32/16, —3v?/4. Consequently, KE (2) has solutions with separated variables in
the case considered (i.e. provided the system (4) takes the form (6)) only for the values of the
parametek given previously. This provides the proof of the first part of theorem 1.

We examine the three possible casesi8/36, —3v2/4 separately.

Case 1. Fork = 0, the equalityR(r) = +2-Y/25;/* = constant holds. We denote this

constant as. Next, it follows from (43) thatM, = m = constant. In view of these facts we
get from (42) the ODE forP (1)

— P 2P +20r3wSyr® —m) =0
which general solutions reads
P(t) = Ca€” +Cse™” + 2r3(mvt — Spr®)t + Cg (46)

whereCy, Cs, Cg are arbitrary constants.

A direct check shows that by applying finite transformations from the symmetry group
admitted by KE undek = 0 to the obtained solution with separated variables (3), (35), (36)
and (46) we can cancél(z).

Scaling when necessaty;, w; in (35), (36) we can choose = 1. Hence we get the
equalityCy = 1/4. Summing up we conclude that the following relations hold

y? 1
Q=exp<—z+vC2x+v(C3+§>t) w1 =X wp =Yy

. 1
el (o)

. . w5 1
p1=v(k2 — C2¢ $2=\ 4 +Aawy + Ay — 5 ) %2
Then, the corresponding solution with separated variables is
yZ
U= eXp<_Z +v(Agt + ng)) .
Consequently, the constartfs andC3 + (1/2) do not enter the final form of the solution with

separated variables. This means that we carCput 0 andCs; = —(1/2).
Thus we have proved the validity of the first part of theorem 5.

Cases 2 and 3Fork = (3v2/16) or k = —(3v?/4). In these cases we get from (39)

.. .2
R R
__2<_> =_a2
R R

where
3 2
v underk = >
)4 16

‘= 32
V
- underk = ———.
2 4

Integrating the ODEs yields
R(t) = (Cy sinhat + C, coshat) ™t
whereC,, C; are arbitrary constants.
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Using shifts with respect to and the equivalence transformation (8) we get the four
inequivalent forms of the functioR ()

R(t) = —
coshat sinhat
Comparing (42) and the first-order differential consequence of (43) yields the second-order
ODE for Z(t) = R~(d/dt)/(P/R?)

R() = R(t) = exp{xat}.

. R.- (R R
—Z+4—-Z+ ——4—>Z=0. (47)
R R R
The general solution of this equation has the following structure

Z(t) = C1Z1(t) + C2Z(1)

whereC1, C, are integration constants. Hence, we conclude that the funétipnis of the
form

P(t) = C1P1(t) + CoP(1) + C3P3(t) + Cy Pu(r) (48)
whereCs, C,4 are integration constants.

On the other hand, if we apply to the solution with separated variables (3), (35), (36)
with P(¢) = O finite transformations from the symmetry group of KE unklet (3v2/16) or

k = —(3v?/4), then we get an equivalent solution with separated variables sucl® ¢hais
of the form

P(1) = CyP{(t) + CoPy(t) + C5P3(1) + C4P4(1). (49)
Here C1, ..., C, are arbitrary constants and the functioB§(r), ..., P,(t) are linearly

independent. Hence we conclude that due to the theorem on the existence and uniqueness
of the Cauchy problem for a fourth-order ODE (47) (considered as an equation for the function
P (1)) the expressions on the right-hand sides of (48) and (49) coincide within the choice of
constants”;, C/,i =1, ..., 4. Consequently, without loss of generality we canput) = 0
in formulae (35) and (36).

Using the reasonings analogous to those of case 1 we canput, C, = 0, C3 = 0.
The second part of theorem 6 is thus proved.

A similar analysis of the separability of KE into three ODEs (7) yields the proofs of the
remaining assertions from section 2.

4. Exact solutions

Remarkably, for the equation under study it is possible to give a complete account of solutions
with separated variables. For the case when KE separates into three first-order ODEs (7), we
get the following family of its exact solutions

) i .
"y exp{v/ <f1?»1 + f_z)»2> dr + g fiy = fax i fay = fox
fofi— fifz L= ffe  fofi— Nife
+< 1 fafi— fife 1) 2, 1 (fzfl— fifz )
— i =2t Tyt | S k) xy
 fofi-fif2 4 2\ faf1— fife
Lhh-HAf k\, 1 v
ey JiJ2 7 — 2 _ Z
+(4V fof1— fif2 4>x 2" fofi= Sl 2!
wherek, fi1(¢), f2(¢) are given by the corresponding formulae from theorems 2-5.
Next, for the case when KE separates into three ODEs of the form (6) we obtain the
following families of its exact solutions:
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(1) k = 0 (this case has been considered in theorem 5)

2
u= exp(—yz +v(Ast + )\2x)>DA§—A1(y +2h2)

whereD, is the parabolic cylinder function.
(2) k = 3v2/16 ork = —3v2/4
R 1 1(.R
= a | RPdr+vioR3( — — = )y2+ (3= —«k

u exp{v 1/ t+ VAo x(vR 4>y 2])( R )xy
3R  15RR k\ , v :
+ - — + — = +—-t+2INR{A2(Ry + 3R
( 4R 4R? 4) 2 }{ 2(Ry + 3Rx)

2 .
+x1}1/2zl/3<3—M(A2(Ry +3Rx) + 11)3/z>

whereR is given by the corresponding formula from theorem 6 ahag is the cylindrical
function.

Note that the obtained families of exact solutions of KE contain two continuous parameters
A1, A2. These parameters have the meaning of eigenvalues of two commuting symmetry
operators of KE, while the corresponding solution with separated variables is the eigenfunction
of these operators. Provided some appropriate boundary and initial conditions are imposed,
the parameters become discrete and thus we get a basis for expanding sufficiently smooth
solutions of KE into series.

5. Conclusions

It is a remarkable feature of the KE (2) that a classical problem of variable separation can
be solved in full generality. The results obtained in this way are in good correspondence
with the ones on symmetry classification of KEs of the form (2). As follows from [5, 6], the
casesk = 3v?/16 andk = —3v2/4 are distinguished by the fact that the corresponding KEs
(2) admit the most extensive symmetry groups. For these choicesKE (2) is invariant

with respect to eight-parameter Lie transformation groups, while for all other valuethef
maximal group is six-parameter.
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