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Abstract. We consider the problem of separation of variables in the Kramers equation admitting
a non-trivial symmetry group. Provided the external potentialV (x) is at most quadratic, a complete
solution of the problem of separation of variables is obtained. Furthermore, we construct solutions
of the Kramers equation with separated variables in explicit form.

1. Introduction

Many phenomena in physics and, especially, in chemical physics may be modelled as the
Brownian motion of particles in an external potentialV (x), the appropriate transport equation
being the (1 + 2)-dimensional Fokker–Planck equation of special form

ut = νuyy − yux + (νy + V ′(x))uy + νu (1)

whereu = u(t, x, y) is a sufficiently smooth real valued function andν is a real parameter.
The first relevant result on studying the partial differential equation (PDE) (1) has been

obtained by Kramers [1]. He found a solution of the escape problem of a classical particle
subjected to Gaussian white noise out of a deep potential well. This is why the equation in
question is called the Kramers equation (KE) (see, for more details [2–4]).

As KE is a PDE with variable coefficients, we cannot apply the Fourier transform in order
to solve it. In fact the only way to obtain exact solutions of KE are either to utilize its Lie
symmetry or to apply the method of the separation of variables. The first possibility has been
exploited recently in [5, 6], where symmetry classification of the class of PDEs (1) has been
carried out. The principal result of these papers is that KE has a symmetry group that is wider
than a trivial one-parameter group of time translations if and only ifV ′′(x) = 0.

The principal aim of this paper is to apply the direct approach to variable separation in
PDEs suggested in [7–9] to solve KE. As is well known, separability of the PDE is intimately
connected to its symmetry within the class of second-order differential operators [10]. This is
why, we will concentrate on the caseV (x) = kx, k = constant, namely, we consider the KE
having non-trivial Lie symmetry

ut = νuyy − yux + (νy + kx)uy + νu. (2)

In a classical setting the method of separation of variables (say, in the Cartesian coordinate
system) is based on a special representation of a solution to be found in factorized form

u(t, x, y) = ϕ0(t)ϕ1(x)ϕ2(y)
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whereϕi, i = 0, 1, 2, are solutions of some ordinary differential equations (ODEs). However,
one can try to separate variables in this equation in another coordinate system, for example, in
polar coordinates and look for a solution of the form

u(t, x, y) = ϕ0(t)ϕ1(
√
x2 + y2)ϕ2

(
arctan

y

x

)
.

So, if we are given any coordinate system, then it is clear how to get exact solutions with
separated variables. However, the classical approach gives no general routine for finding
all possible coordinate systems providing separability of the equation. Our approach to the
problem of the separation of variables in evolution-type equations (to be specific, we take
the case of an equation having three independent variablest, x, y) is based on the following
observations.

• All solutions with separated variables known to us can be represented in the form

u(t, x, y) = Q(t, x, y)ϕ0(t)ϕ1(ω1(t, x, y))ϕ2(ω2(t, x, y)) (3)

whereQ,ω1, ω2 are sufficiently smooth functions andϕi, i = 0, 1, 2 satisfy some ODEs.
• The functionsϕi, i = 0, 1, 2, depend on two arbitrary parametersλ1, λ2 called spectral

parameters or separation constants. Furthermore, the functionsQ,ω1, ω2 are independent
of λ1, λ2.

By properly postulating these features we have formulated an efficient approach to the
problem of variable separation in linear PDEs [9]. Applying it to the KE (2) we look for its
particular solutions of the form (3), where functionsQ,ω1, ω2 are chosen in such a way that
inserting (3) into KE yields three ODEs for functionsϕ0(t), ϕ1(ω1), ϕ2(ω2)

U0(t, ϕ0, ϕ̇0; λ1, λ2) = 0

Ui(ωi, ϕi, ϕ̇i , ϕ̈i; λ1, λ2) = 0 i = 1, 2. (4)

HereU0, U1, U2 are some smooth functions of the indicated variables,λ1, λ2 are real parameters
and

rank

∥∥∥∥∥∥∥∥∥∥∥

∂U0

∂λ1

∂U0

∂λ2

∂U1

∂λ1

∂U1

∂λ2

∂U2

∂λ1

∂U2

∂λ2

∥∥∥∥∥∥∥∥∥∥∥
= 2. (5)

Note that the functionsQ,ω1, ω2 are independent ofλ1, λ2.
Provided these requirements are met, we say that KE is separable in the coordinate system

t, ω1(t, x, y), ω2(t, x, y).
Due to the fact that the equation under study is linear, the reduced equations prove to be

linear as well. Furthermore, we have to consider two distinct cases.

Case 1.The system of equations (4) has the form

ϕ̇0 = A0(t; λ1, λ2)ϕ0

ϕ̇1 = A1(ω1; λ1, λ2)ϕ1

ϕ̈2 = A2(ω2; λ1, λ2)ϕ̇2 +A3(ω2; λ1, λ2)ϕ2. (6)
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Case 2.The system of equations (4) has the form

ϕ̇0 = A0(t; λ1, λ2)ϕ0

ϕ̇1 = A1(ω1; λ1, λ2)ϕ1

ϕ̇2 = A2(ω2; λ1, λ2)ϕ2. (7)

In these formulaeA0, . . . , A3 are some smooth real valued functions of the indicated
variables.

Consequently, there are two different means to separate variables in KE, either to reduce
it to two first-order and one second-order ODEs or to three first-order ODEs. It is impossible
to reduce KE to two or three second-order ODEs because it contains a second-order derivative
with respect to one variable only.

Provided the system of reduced ODEs has the form (6), separation of variables in (2) is
performed in the following way.

1. We insert the ansatz (3) into KE and express the derivatives ˙ϕ0, ϕ̇1, ϕ̈1, ϕ̈2 in terms of
functionsϕ0, ϕ1, ϕ2, ϕ̇2 using equations (6) and their differential consequences (where
necessary).

2. The equality obtained is split byϕ0, ϕ1, ϕ2, ϕ̇2, λ1, λ2 which are regarded as independent
variables. This yields an over-determined system of nonlinear PDEs for unknown
functionsQ,ω1, ω2.

3. After solving this system we get an exhaustive description of coordinate systems providing
separability of KE.

Clearly, if we adopt a more general definition of the separation of variables, then additional
coordinate systems providing separability of KE may appear. However, all solutions with
separated variables of the Schrödinger and heat conductivity equations known to us can be
obtained within the described approach.

The case when the system of reduced ODEs is of the form (7) is handled in a similar way.
Next, we introduce an equivalence relation on the set of all coordinate systems providing

separability of KE. We say that two coordinate systemst, ω1, ω2 andt ′, ω′1, ω
′
2 are equivalent

if the corresponding solutions with separated variables are transformed one into another by

• the group transformations from the Lie transformation group admitted by KE,
• the transformations of the form

t → t ′ = f0(t) ωi → ω′i = fi(ωi) (8)

Q→ Q′ = Qh0(t)h1(ω1)h2(ω2) (9)

wheref0, fi, h0, hi are some smooth functions.

It can be proved that formulae (8), (9) define the most general transformation preserving
the class of ans̈atze (3). The equivalence relation splits the set of all possible coordinate systems
into equivalence classes. In a sequel, when presenting the lists of coordinate systems enabling
us to separate variables in KE we will give only one representative for each equivalence class.

2. Principal results

In this section we give a complete account of our results on the separation of variables in
KE obtained within the framework of the approach described in the introduction. We write
down explicit forms of the functionsQ(t, x, y),ω1(t, x, y),ω2(t, x, y) and the corresponding
reduced ODEs for functionsϕ0(t), ϕ1(ω1), ϕ2(ω2).
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Theorem 1. Equation (2) admits the separation of variables into two first-order and one
second-order ODEs if and only ifk takes one of the three values0, 3ν2/16, −3ν2/4.
Furthermore, equations separate into three first-order ODEs with arbitraryk.

Theorem 1 gives a general description of separable KEs. The solution of the problem of
separation of variables in corresponding KEs is provided by theorems 2–6 later.

Theorem 2. The set of inequivalent coordinate systems providing separability of KE with
k = ν2/4 is exhausted by the following ones

ωi = fiy − ḟix
ḟ2f1− ḟ1f2

i = 1, 2

Q = exp

{(
− 1

4ν

f̈2f1− f̈1f2

ḟ2f1− ḟ1f2
− 1

4

)
y2 +

1

2ν

(
f̈2ḟ1− f̈1ḟ2

ḟ2f1− ḟ1f2
− k

)
x

+

(
1

4ν

...

f 2 ḟ1−
...

f 1 ḟ2

ḟ2f1− ḟ1f2
− k

4

)
x2 − 1

2
ln |ḟ2f1− ḟ1f2| + ν

2
t

}
ϕ̇0 = ν

(
f1λ1 + f2λ2

ḟ2f1− ḟ1f2

)2

ϕ0 ϕ̇1 = λ1ϕ1 ϕ̇2 = λ2ϕ2 (10)

where

f1 = t
(
A1 sinh

ν

2
t +A2 cosh

ν

2
t

)
+A3 sinh

ν

2
t +A4 cosh

ν

2
t

f2 = t
(
B1 sinh

ν

2
t +B2 cosh

ν

2
t

)
+B3 sinh

ν

2
t +B4 cosh

ν

2
t

andA1, . . . , B4 are arbitrary real constants satisfying the condition2C12−ν(C13−C24) = 0.
Hereafter we use the notations

Cij = BiAj − AiBj i, j = 1, . . . ,4.

Theorem 3. The set of inequivalent coordinate systems providing separability of KE with
k > ν2/4 is exhausted by those given in (10) with

f1 = sinbt (A1 sinhat +A2 coshat) + cosbt (A3 sinhat +A4 coshat)

f2 = sinbt (B1 sinhat +B2 coshat) + cosbt (B3 sinhat +B4 coshat)

wherea = ν/2, b = (k − (ν2/4))1/2 andA1, . . . , B4 are constants fulfilling the condition
(C12 +C34)b + (C13− C24)a = 0. The explicit form of the functionQ and the reduced ODEs
are also obtained from the formulae (10) withf1, f2 given previously.

Theorem 4. The set of inequivalent coordinate systems providing separability of KE with
k < ν2/4 andk 6= 0, 3ν2/16,−3ν2/4 is exhausted by those given in (10) with

f1 = sinhbt (A1 sinhat +A2 coshat) + coshbt (A3 sinhat +A4 coshat)

f2 = sinhbt (B1 sinhat +B2 coshat) + coshbt (B3 sinhat +B4 coshat)

wherea = ν/2, b = ((ν2/4) − k)1/2 andA1, . . . , B4 are constants fulfilling the condition
(C12−C34)b + (C13−C24)a = 0. The explicit form of the functionQ and reduced ODEs are
also obtained from the formulae (10) withf1, f2 given before.
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Theorem 5. The set of inequivalent coordinate systems providing separability of KE with
k = 0 is exhausted by:

(1) those given in (10) with

f1 = A1 sinhνt +A2 coshνt +A3t +A4

f2 = B1 sinhνt +B2 coshνt +B3t +B4

whereA1, . . . , B4 are constants fulfilling the equationνC12−C34 = 0. The explicit form
of the functionQ and reduced ODEs are also obtained from the formulae (10) withf1, f2

given previously;
(2) the following coordinate system

ω1 = x ω2 = y Q = exp

(
−y

2

4

)
ϕ̇0 = νλ1ϕ0 ϕ̇1 = νλ2ϕ1 ϕ̈2 =

(
y2

4
+ λ2y + λ1− 1

2

)
ϕ2.

Theorem 6. The set of inequivalent coordinate systems providing separability of KE with
k = 3ν2/16or k = −3ν2/4 is exhausted by

(1) those given in theorem 4 underk = 3ν2/16or k = −3ν2/4;
(2) the following coordinate systems

ω1 = R3x ω2 = Ry + 3Ṙx

Q = exp

{(
Ṙ

νR
− 1

4

)
y2 +

1

2ν

(
3
R̈

R
− k

)
xy

+

(
− 3

...

R

4νR
+

15ṘR̈

4νR2
− k

4

)
x2 +

ν

2
t + 2 lnR

}
ϕ̇0 = νλ1R

2ϕ0 ϕ̇1 = νλ2ϕ1 ϕ̈2 = (λ2ω2 + λ1)ϕ2

where

R(t) =


1

coshat
1

sinhat
exp{±at}

with a =


ν

4
underk = 3ν2

16
ν

2
underk = −3ν2

4
.

3. Proof of theorems 1–6

In order to prove the assertions of the previous section one should apply to equation (2) the
algorithm of variable separation described in the introduction.

We give a detailed proof for the case when the system of reduced ODEs is of the form (6).
Inserting ansatz (3) into KE (2) and expressing the derivatives ˙ϕ0, ϕ̇1, ϕ̈1, ϕ̈2 in terms of the
functionsϕ0, ϕ1, ϕ2, ϕ̇2 with the use of equations (6) and their differential consequences yield
a system of two nonlinear PDEs

Qω2t + yQω2x = ν(yQω2y + 2Qyω2y + 2QA1ω1yω2y +QA2ω
2
2y +Qω2yy) + kxQω2y

(11)

Qt +QA0 +QA1ω1t + yQx + yQA1ω1x

= ν(Q + yQy + yQA1ω1y +Qyy + 2QyA1ω1y +Q(A2
1 +A1ω1)ω

2
1y

+QA1ω1yy +QA3ω
2
2y) + kx(Qy +QA1ω1y). (12)
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This system is split with respect to variablesλ1, λ2 (we recall that the functionsω1, ω2

are independent ofλ1, λ2). To this end we differentiate (11) with respect toλi and get

(2A1λiω1y +A2λiω2y)ω2y = 0 i = 1, 2.

Due to the fact thatω2y does not vanish identically (otherwise it follows from (11) that
ω2 = constant), the equation

2A1λiω1y +A2λiω2y = 0 i = 1, 2 (13)

holds.
Let us show first that we can, without loss of generality, putω1y = 0. Suppose the inverse,

namely that the inequalityω1y 6= 0, holds true. It follows from the second equation of system
(6) thatA2

1λ1
+A2

1λ2
6= 0. Let the functionA1λ1 be non-vanishing, then by the influence of (13)

A2λ1 6= 0. Denoting

A1λ1 = g(ω1, λ1, λ2) − 2A2λ1 = f (ω2, λ1, λ2)

we rewrite (13) as follows

ω1y

ω2y
= f (ω2, λ1, λ2)

g(ω1, λ1, λ2)
. (14)

Differentiating (14) with respect toλ1 yields

fλ1

f
= gλ1

g
.

Hence, we conclude that there is a functionk = k(λ1, λ2) such that

fλ1

f
= gλ1

g
= k(λ1, λ2).

Integrating these equations we get

f = k1(λ1, λ2)f1(ω2, λ2) g = k1(λ1, λ2)g1(ω1, λ1)

so that (14) reduces to the relation

ω1y

ω2y
= f1(ω2, λ2)

g1(ω1, λ2)
.

In a similar way we establish that the last relation is equivalent to the following one

ω1y

ω2y
= f2(ω2)

g2(ω1)

hence

g2(ω1)ω1y = f2(ω2)ω2y.

Taking into account the equivalence relation (8) we can putg2 = 1 andf2 = 1 in the
equality thus gettingω1y = ω2y . Integrating this PDE yields

ω1 = ω2 + h(t, x)

with an arbitrary smooth functionh. In view of this equation, relation (13) takes the form

2A1λi +A2λi = 0 i = 1, 2.

Hence we conclude that there exists a function3(λ1, λ2) such that

A1 = 3(λ1, λ2) + Ã1(ω1) A2 = −23(λ1, λ2) + Ã2(ω2). (15)
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Within the equivalence transformation (9) with properly chosen functionsh1, h2 we can put
Ã1(ω1) = 0, Ã2(ω2) = 0. Furthermore, defining the new separation constants as

λ′1 = 3(λ1, λ2) λ′2 = λ2

and omitting the primes we represent (15) in the form

A1 = λ1 A2 = −2λ1.

Consequently, system (6) takes the form

ϕ̇0(t) = A0(t)ϕ0(t)

ϕ̇1(ω1) = λ1ϕ1(ω1)

ϕ̈2(ω2) = −2λ1ϕ̇2(ω2) +A3(ω2, λ1, λ2)ϕ2(ω2). (16)

Making the change of variablesϕ2 = φ exp{−λ1ω2} reduces the third equation of system
(16) to

φ̈ = (λ2
1 +A3)φ.

Let φ = φ(ω2, λ1, λ2) be a solution of this equation. Then, the corresponding solution with
separated variables becomes

u = Q(t, x, y)φ(ω2, λ1, λ2) exp

{∫
A0(t) dt + λ1(ω1− ω2)

}
.

The structure of so obtained solution with separated variables is such that dependence ofω1

on y is not essential. Indeed, the functionω1 enters into the solution only as a combination
ω1 − ω2 and the latter is equal toh(t, x). Consequently, we have proved that without loss of
generality we may chooseω1y = 0.

Given the conditionω1y = 0, equation (13) reduces to the relationsA2λi = 0, i = 1, 2,
hence we getA2 = A2(ω2). Choosing appropriately the functionh2 in (9) we can putA2 = 0.
Next, differentiating (12) with respect toλi we arrive at the equations

A0λi +A1λi (ω1t + yω1x) = νA3λiω
2
2y i = 1, 2. (17)

Differentiating twice these equations with respect toy yields

A3ω2ω2λiω
4
2y + 5A3ω2λiω

2
2yω2yy + 2A3λi (ω

2
2yy + ω2yω2yyy) = 0 (18)

wherei = 1, 2.
Note that due to (17) the inequalityA3λi 6= 0 holds. Dividing (18) intoA3λi and

differentiating the equality obtained byλj , j = 1, 2 we get(
A3ω2ω2λi

A3λi

)
λj

ω2
2y + 5

(
A3ω2λi

A3λi

)
λj

ω2yy = 0 i, j = 1, 2. (19)

Case 1.At least one of the four expressions(
A3ω2λi

A3λi

)
λj

does not vanish. Then it is easy to become convinced that
ω2yy

ω2
2y

= f (ω2)

holds true. Integration of this relation yields

ω2y = g1(t, x)exp

{∫
f (ω2) dω2

}
whereg1(t, x) is an arbitrary smooth function.
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Next, by using the equivalence relation (8) we reduce the equation obtained to the form

ω2y = g1(t, x)

whence

ω2 = yg1(t, x) + g2(t, x) (20)

g2(t, x) being an arbitrary smooth function.
In view of this result, (18) takes the formA3ω2ω2λi = 0, i = 1, 2, whence

A3 = 31(λ1, λ2)ω2 +32(λ1, λ2) + F(ω2) (21)

where31,32, F are arbitrary smooth functions of the indicated variables. Furthermore, it is
not difficult to prove that31,32 are functionally independent (since otherwise condition (5)
would be broken) and, consequently, after redefiningλ1, λ2 we can represent (21) in the form

A3 = λ1ω2 + λ2 + F(ω2). (22)

Case 2.Suppose that now(
A3ω2λi

A3λi

)
λj

= 0 i, j = 1, 2.

Integrating this system of PDEs gives the following form ofA3λi

A3λi = Bi(ω2)Li(λ1, λ2) i = 1, 2 (23)

whereBi, Li are arbitrary smooth functions andB2
1 +B2

2 6= 0.
As a compatibility condition of system (23) we get

B1L1λ2 = B2L2λ1.

Subcase 2.1.L1λ2 6= 0, L2λ1 6= 0. Given these restrictions the compatibility condition is
transformed to

B1(ω2)

B2(ω2)
= L2λ1

L1λ2

= constant. (24)

Integrating system (23) with the result of (24) yields

A3 = 3(λ1, λ2)F1(ω2) + F2(ω2)

where3,F are arbitrary smooth functions of the indicated variables. After redefining the
separation parametersλ1, λ2 we represent the relation as follows

A3 = λ1F1(ω2) + F2(ω2). (25)

Subcase 2.2.L1λ2 = 0, L2λ1 = 0. Integrating system (23) and redefining the separation
parametersλ1, λ2 yields

A3 = λ1S1(ω2) + λ2S2(ω2) + S0(ω2) (26)

whereS1, S2, S0 are arbitrary smooth functions. An analysis of formulae (22), (25) and (26)
shows that the first two are particular cases of formula (26). Thus, the most general form of
the functionA3 is given by (26).
Inserting (26) into (17) and differentiating the equality obtained with respect tox andλj gives
A1λiλj = 0, i, j = 1, 2. Hence, we get forA1

A1 = λ1L1(ω1) + λ2L2(ω1) +L0(ω1) (27)

whereL1, L2, L0 are arbitrary smooth functions.
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Next, inserting (26), (27) into (17) and differentiating the equation obtained with respect
to λj we getA0λiλj = 0, i, j = 1, 2, hence

A0 = λ1R1(t) + λ2R2(t) +R0(t) (28)

whereR1, R2, R0 are arbitrary smooth functions.
With these results we can split equations (11) and (12) byλ1, λ2 thus obtaining a system

of four nonlinear PDEs for the three functionsω1, ω2,Q

Qω2t + yQω2x = (νy + kx)Qω2y + 2νQyω2y + νQω2yy (29)

Qt +QR0 +QL0(ω1t + yω1x) + yQx = νQ + (νy + kx)Qy + νQyy + νQS0ω
2
2y (30)

R1 +L1(ω1t + yω1x) = νS1ω
2
2y (31)

R2 +L2(ω1t + yω1x) = νS2ω
2
2y. (32)

Making an equivalence transformation (9) with appropriately chosen functions we can put
L0 = 0 andR0 = 0. Next, due to the requirement in (5)S1S2 6= 0.

There are two inequivalent casesL2 = 0 andL2 6= 0. Since they are handled in a similar
way, we consider in detail the caseL2 = 0 only. In view of (5)L1 does not vanish. Choosing
appropriately the functionsf1, f2 in (8) we can putL1 = 1, S2 = ±1 in formulae (29)–(32).
Integrating (32) with (31) yields

ω2 = R(t)y + F(t, x) R(t) 6= 0 (33)

whereR, F are arbitrary smooth functions andR2 = ±νR2.
Differentiating (31) twice with respect toy and taking into account (33) we arrive at the

equationS1ω2ω2 = 0, therefore

S1 = C1ω2 +C2

whereC1 6= 0 andC2 are arbitrary constants. Next, integrating (31) we obtain forω1, F(t, x)

ω1 = νC1(R
3x + P(t))−

∫
R1(t) dt

F (t, x) = 3Ṙ +R−2Ṗ (t)− C−1
1 C2 (34)

whereP(t) is an arbitrary smooth function.
Hence, we conclude that the corresponding solution with separated variables reads as

u = Q(t, x, y)exp

{
λ1

∫
R1(t) dt + λ2

∫
R2(t) dt

}
exp{λ1ω1}ϕ2(ω2)

= Q(t, x, y)exp

{
λ2

∫
R2(t) dt

}
exp{λ1(νC1(R

3x + P(t)))}ϕ2(ω2).

Thus,R1(t) does not enter into the solution with separated variables and, therefore, we can
put R1 = 0 in (34). Furthermore, within an equivalence transformation (8) we can choose
C1 = ν−1, C2 = 0, thus getting

ω1 = R(t)3x + P(t) (35)

ω2 = R(t)y + 3Ṙ(t)x + ṖR(t)−2. (36)

ProvidedL2 6= 0, the forms of the functionsω1, ω2 are the same as those given in (35),
(36).

Inserting (35) and (36) into (29) and integrating byywe get the form of the factorQ(t, x, y)

Q = exp

{(
4Ṙ − νR

4νR

)
y2 +

(
3R̈ − kR

2νR

)
xy +

y

2νR

d

dt

(
Ṗ

R2

)
+M(t, x)

}
. (37)
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Substituting (37) into (30) we come to the following relation

1

ν

d

dt

(
Ṙ

R

)
y2 +

3

2ν

d

dt

(
R̈

R

)
xy +

1

2ν
Ży +Mt +

1

2ν

(
3
R̈

R
− k

)
y2 + yMx

= ν

2
+ 2

Ṙ

R
+ (νy + kx)

((
2Ṙ

νR
− 1

2

)
y +

1

2ν

(
3
R̈

R
− k

)
x +

1

2ν
Z

)
+ν

((
2Ṙ

νR
− 1

2

)
y +

1

2ν

(
3
R̈

R
− k

)
x +

1

2ν
Z

)2

+ νS0R
2 (38)

where we use the notation

Z(t) = R−1 d

dt

(
Ṗ

R2

)
.

Differentiating (38) three times with respect toy yieldsS0ω2ω2ω2 = 0, therefore

S0 = C1ω
2
2 +C2ω2 +C3

whereC1, C2, C3 are arbitrary constants. Next, differentiating (38) with respect toy twice and
with respect tox once we getMxxx = 0 or

M = M1(t)x
2 +M2(t)x +M3(t)

whereM1,M2,M3 are arbitrary smooth functions.
Finally, inserting the obtained expressions forS0,M into (38) and splitting the variables

x, y we come to the following system of ODEs

R̈

R
= 2

Ṙ2

R2
+

2ν2

5
C1R

4 − ν2

10
+
k

5
(39)

M1 = − 3
...

R

4νR
+

15

4ν
+ 3νC1ṘR

3− k
4

(40)

Ṁ1 = 9R̈2

4νR2
+ 9νC1R

2Ṙ2 − k2

4ν
(41)

M2 = − 1

2ν
Ż +

2Ṙ

νR
Z + νC2R

3 + 2νRṖC1 (42)

Ṁ2 = 3R̈

2νR
Z + 3νR2ṘC2 + 6νṘṖC1 (43)

Ṁ3 = ν

2
+ 2

Ṙ

R
+

1

4ν
Z2 + νC1

Ṗ 2

Ṙ2
+ νC2Ṗ + νC3R

2. (44)

Differentiating (40) with respect tot and subtracting the resulting equation from (41)
yields the fourth-order ODE for the functionR

−R
(IV )

R
+ 6
Ṙ

...

R

R3
+ 2

R̈2

R2
− 10

Ṙ2R̈

R3
+ 4ν2C1R̈R

3 +
k3

3
= 0.

Reducing the order of this ODE with the help of equation (39) and its first- and second-order
differential consequences we arrive at the following relation

4ν2

25
C2

1R
8 = ν4

100
+
k2

25
− ν

2k

25
− k

2

9
. (45)

If in (45) C1 6= 0, then in view of (39)k = 0. Provided,C1 = 0, k is a root of the quadratic
equation

64k2 + 36ν2k − 9ν2 = 0

hencek = 3ν2/16 ork = −3ν2/4.
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Thus the system of ODEs (39)–(44) is consistent only if the parameterk takes one of three
values 0, 3ν2/16,−3ν2/4. Consequently, KE (2) has solutions with separated variables in
the case considered (i.e. provided the system (4) takes the form (6)) only for the values of the
parameterk given previously. This provides the proof of the first part of theorem 1.

We examine the three possible cases 0, 3ν2/16,−3ν2/4 separately.

Case 1. For k = 0, the equalityR(t) = ±2−1/2S
−1/4
1 = constant holds. We denote this

constant asr. Next, it follows from (43) thatM2 = m = constant. In view of these facts we
get from (42) the ODE forP(t)

− ...

P +ν2Ṗ + 2νr3(νS2r
3−m) = 0

which general solutions reads

P(t) = C4 eνt +C5 e−νt + 2r3(mν−1− S2r
3)t +C6 (46)

whereC4, C5, C6 are arbitrary constants.
A direct check shows that by applying finite transformations from the symmetry group

admitted by KE underk = 0 to the obtained solution with separated variables (3), (35), (36)
and (46) we can cancelP(t).

Scaling when necessaryω1, ω2 in (35), (36) we can chooser = 1. Hence we get the
equalityC1 = 1/4. Summing up we conclude that the following relations hold

Q = exp

(
− y

2

4
+ νC2x + ν

(
C3 +

1

2

)
t

)
ω1 = x ω2 = y

ϕ̇0 = ν
(
λ1−

(
C3 +

1

2

))
ϕ0

ϕ̇1 = ν(λ2 − C2)ϕ1 ϕ̈2 =
(
ω2

2

4
+ λ2ω2 + λ1− 1

2

)
ϕ2.

Then, the corresponding solution with separated variables is

u = ϕ2 exp

(
−y

2

4
+ ν(λ1t + λ2x)

)
.

Consequently, the constantsC2 andC3 + (1/2) do not enter the final form of the solution with
separated variables. This means that we can putC2 = 0 andC3 = −(1/2).

Thus we have proved the validity of the first part of theorem 5.

Cases 2 and 3.Fork = (3ν2/16) or k = −(3ν2/4). In these cases we get from (39)

R̈

R
− 2

(
Ṙ

R

)2

= −a2

where

a =


ν

4
underk = 3ν2

16
ν

2
underk = −3ν2

4
.

Integrating the ODEs yields

R(t) = (C1 sinhat +C2 coshat)−1

whereC1, C2 are arbitrary constants.



3862 R Zhdanov and A Zhalij

Using shifts with respect tot and the equivalence transformation (8) we get the four
inequivalent forms of the functionR(t)

R(t) = 1

coshat
R(t) = 1

sinhat
R(t) = exp{±at}.

Comparing (42) and the first-order differential consequence of (43) yields the second-order
ODE forZ(t) = R−1(d/dt)/(Ṗ /R2)

−Z̈ + 4
Ṙ

R
Ż +

(
R̈

R
− 4

Ṙ

R

)
Z = 0. (47)

The general solution of this equation has the following structure

Z(t) = C1Z1(t) +C2Z2(t)

whereC1, C2 are integration constants. Hence, we conclude that the functionP(t) is of the
form

P(t) = C1P1(t) +C2P2(t) +C3P3(t) +C4P4(t) (48)

whereC3, C4 are integration constants.
On the other hand, if we apply to the solution with separated variables (3), (35), (36)

with P(t) = 0 finite transformations from the symmetry group of KE underk = (3ν2/16) or
k = −(3ν2/4), then we get an equivalent solution with separated variables such thatP(t) is
of the form

P(t) = C ′1P ′1(t) +C ′2P
′
2(t) +C ′3P

′
3(t) +C ′4P

′
4(t). (49)

Here C ′1, . . . , C
′
4 are arbitrary constants and the functionsP ′1(t), . . . , P

′
4(t) are linearly

independent. Hence we conclude that due to the theorem on the existence and uniqueness
of the Cauchy problem for a fourth-order ODE (47) (considered as an equation for the function
P(t)) the expressions on the right-hand sides of (48) and (49) coincide within the choice of
constantsCi, C ′i , i = 1, . . . ,4. Consequently, without loss of generality we can putP(t) = 0
in formulae (35) and (36).

Using the reasonings analogous to those of case 1 we can putr = 1, C2 = 0, C3 = 0.
The second part of theorem 6 is thus proved.

A similar analysis of the separability of KE into three ODEs (7) yields the proofs of the
remaining assertions from section 2.

4. Exact solutions

Remarkably, for the equation under study it is possible to give a complete account of solutions
with separated variables. For the case when KE separates into three first-order ODEs (7), we
get the following family of its exact solutions

u = exp

{
ν

∫ (
f1λ1 + f2λ2

ḟ2f1− ḟ1f2

)2

dt + λ1
f1y − ḟ1x

ḟ2f1− ḟ1f2
+ λ2

f2y − ḟ2x

ḟ2f1− ḟ1f2

+

(
− 1

4ν

f̈2f1− f̈1f2

ḟ2f1− ḟ1f2
− 1

4

)
y2 +

1

2ν

(
f̈2ḟ1− f̈1ḟ2

ḟ2f1− ḟ1f2
− k

)
xy

+

(
1

4ν

...

f2 ḟ1−
...

f1 ḟ2

ḟ2f1− ḟ1f2
− k

4

)
x2 − 1

2
ln |ḟ2f1− ḟ1f2| + ν

2
t

}
wherek, f1(t), f2(t) are given by the corresponding formulae from theorems 2–5.

Next, for the case when KE separates into three ODEs of the form (6) we obtain the
following families of its exact solutions:
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(1) k = 0 (this case has been considered in theorem 5)

u = exp

(
−y

2

4
+ ν(λ1t + λ2x)

)
Dλ2

2−λ1
(y + 2λ2)

whereDν is the parabolic cylinder function.
(2) k = 3ν2/16 ork = −3ν2/4

u = exp

{
νλ1

∫
R2 dt + νλ2R

3x

(
Ṙ

νR
− 1

4

)
y2 +

1

2ν

(
3
R̈

R
− k

)
xy

+

(
− 3

...

R

4νR
+

15ṘR̈

4νR2
− k

4

)
x2 +

ν

2
t + 2 lnR

}
{λ2(Ry + 3Ṙx)

+λ1}1/2Z1/3

(
2

3λ2
(λ2(Ry + 3Ṙx) + λ1)

3/2

)
whereR is given by the corresponding formula from theorem 6 andZ1/3 is the cylindrical
function.

Note that the obtained families of exact solutions of KE contain two continuous parameters
λ1, λ2. These parameters have the meaning of eigenvalues of two commuting symmetry
operators of KE, while the corresponding solution with separated variables is the eigenfunction
of these operators. Provided some appropriate boundary and initial conditions are imposed,
the parameters become discrete and thus we get a basis for expanding sufficiently smooth
solutions of KE into series.

5. Conclusions

It is a remarkable feature of the KE (2) that a classical problem of variable separation can
be solved in full generality. The results obtained in this way are in good correspondence
with the ones on symmetry classification of KEs of the form (2). As follows from [5, 6], the
casesk = 3ν2/16 andk = −3ν2/4 are distinguished by the fact that the corresponding KEs
(2) admit the most extensive symmetry groups. For these choices ofk, KE (2) is invariant
with respect to eight-parameter Lie transformation groups, while for all other values ofk the
maximal group is six-parameter.
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